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I. INTRODUCTION 

A. Motivation 

Methods of obtaining spectral estimates from a time func

tion have been useful in speech analysis (11), echo-ranging 

systems (1), seismic exploration (1), ocean-wave forecasting 

(8), meteorology (2), and in many other areas. 

In some cases the process being analyzed is relatively 

stable so that a fixed frequency band-pass filter can be used 

to operate on the signal after it is mixed with a variable 

frequency sine wave. In effect, the input signal is frequency-

swept through a fixed-frequency filter. This type of analysis 

produces spectra with high resolution but requires more than a 

minute to analyze a few seconds of the signal. 

Faster types of heterodyne analyzers are available where 

the signal is time compressed before passing through the band

pass filter, but these require rather elaborate schemes to 

obtain high resolution and still operate in real time. 

A stationary band-pass filter bank is another type of 

analyzer which operates in real time. The main problem 

associated with this type of analyzer is that an impractical 

number of filters must usually be used to obtain good 

resolution. 

Frequently, when the analysis does not have to be done in 

real time, the time signal is sampled and then analyzed on a 

digital computer. Using the "indirect" approach discussed by 
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Blackman and Tukey (2), the data record is weighted by the 

desired lag window, the autocovariance function is found, and 

the Fourier cosine transform is taken. If this is performed 

properly, the spectral estimates will be considerably smoothed 

and moderately stable. 

The "direct" method discussed by Blackman and Tukey 

involves taking the Fourier transform of the original time 

series and then forming the power spectrum from the Fourier 

transform. The effect of different data windows can be 

obtained either by initially weighting the data or, equiva-

lently, by performing a convolution involving the corresponding 

spectral window and the spectral estimates obtained from the 

unmodified data. 

Thus the "indirect" method corresponds to a Fourier trans

form of an average of products, while the "direct" method 

corresponds to squaring a Fourier transform. Both of these 

can be done on a general purpose digital computer but seldom 

in real time. 

B. Statement and Scope of the Problem 

The principal objective of this investigation was to find 

special purpose digital computer configurations which could be 

used in applying the "direct" method of finding spectral com

ponents. The machines to be discussed essentially compute the 

complex Fourier transform of a time sampled signal while the 

samples are being taken. If estimates of the "power" spectrum 
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of this signal are required, they are obtained by squaring the 

Fourier transform and smoothing the resulting spectral esti

mates by convolving with a Banning spectral window, a Hamming 

spectral window (2), or any other spectral window. 

In a special purpose machine, this convolution could be 

built into the analyzer quite conveniently. The main portion 

of this report, however, is concerned with the digital 

machines which form the initial complex unsmoothed spectral 

estimates. 
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II. "ûIliKCT" CALCULATION OF THE FOURIER TRANSFORM 

The Fourier transform of a time sampled signal can be 

found from the original time function in several ways. The 

approach discussed here starts with the initial time function 

and results in the complex Fourier series expression consid

ered by Cooley and Tukey (5). This expression, in most cases, 

can be computed while the function is being sampled through 

the use of a special purpose machine. 

A. The Fourier Transform 

The Fourier transform of a time sampled signal is found 

heuristically in the following manner. 

Given a record of the time function T seconds long, a 

periodic function A(t) can be formed which is identical to the 

input function over (0,T) and satisfies the relation A(t + T) 

= A(t). The components of the Fourier transform of this 

periodic extension of the original time function will be used 

as estimates of the spectral components which were present 

during the 0 to T time period. 

Thus A(t) can be expressed as a Fourier series of the 

form 

A(t) = ^ X' (i)e"i(iwot) (1) 
j=_eo 
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where 

T 

X'(j) = 1 
T ( 2 )  

each being the Fourier transform of the other (7). After 

being sampled, A(t) can be expressed as 

N-1 
A(t) 

sampled I A(kAT)6(t-kAT) 0<t<T (3) 
k=0 

where T = NAT = the length of the record and AT = the sample 

period (3). Therefore, 

x ' ( i )  =  ^  
N-l 
I A(kAT) 6 (t-kAT) 

k=0 
(4) 

where 

U), 
2ir 
T 

(5) 

and 

T 
, N-l 

X'(j) = ^ I A(kAT) 
k=0 

6 ( t - k A T ) e ^ d t  ( 6 )  
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Thus, 

X'(j) = ^ Ï A(kAT)ei(iwokAT) (?) 
k=0 

Note that aig = 2it/T = 2n/NAT and denote A(kAT) by A(k) . 

XMJ) = i  A(k)[e2'i/W]i* 
k=0 

or 

1 -Tf 
x'(j) = ^ I A(k)w]K (9) 

k=0 

where W = j = 0,1,«**,N-1. 

B. Obtaining Spectral Estimates 

The jx'(j) p values may be used as estimates of the power 

spectrum as they stand, but the statistical stability of these 

estimates may not be acceptable. Davenport and Root (6) 

showed that for real Gaussian random signals in the limiting 

case of T approaching infinity, ti.e expected value of the 

calculated spectral estimates approached the true spectrum but 

the variance of these estimates did not approach zero. 

Forming the |x'(j)|^ terms is equivalent to Blackman and 

Tukey's "direct" method of spectral analysis using the D QC T )  

data window (2). If another type of data window is preferred 

for smoothing purposes, the corresponding spectral window can 

Then 

(3) 
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be convolved with the initially obtained power spectrum, l/fhen 

a Banning spectral window is used, the smoothed spectral esti

mates can be found from the jx'(j)|^ estimates using the 

following expressions 

U(0) = 0.5|X'(0)|2 + 0.5|X'(1)|2 

U(r) = 0.25|X'(r-1) I 2 + 0.5|X'(r)|2 + 0.25|x'(r+1) |2 (10) 

U(N-l) = 0.5[X'(N-2)|2 + 0.5|X'(N-1)|2 

where r = l,2,-*',N-2. 

For other spectral windows the coefficients are altered 

but the basic method remains the same. 
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III. THE RECURSIVE RELATIONS USED IN EVALUATING 
THE COMPLEX FOURIER SERIES 

The evaluation of Equation 9 in its present form usually 

could not be performed on a real-time basis. Cooley and Tukey 

(5), however, have approached the problem in a slightly differ

ent manner and have substantially reduced the number of 

arithmetic operations required to evaluate a Fourier series, 

when N is a power of 2, through the use of a set of recursive 

equations. 

Using the same type of approach, a set of recursive 

equations can also be formed whenever N can be expressed as 

the product of any set of integers. 

The increase in efficiency and the parallel computation 

capability afforded through use of this approach result in 

making real-time digital spectral analysis practical. 

A. Recursive Equations When N = 2^ 

The recursive equations for the case of N being a power 

of two are presented in considerable detail by Cooley and 

Tukey in the April 1965 issue of Mathematics of Computation. 

Cooley and Tukey considered the problem of evaluating a 

complex Fourier series of the form 

N-1 
X(j) = I A(k)w]* (11) 

k=0 

where W = g^ni/N^ j = 0,1,2,•••,N-1. 
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Upon comparing these X values with the X' values of 

Equation 9 we see that the X values of Equation 11 are 

directly proportional to the X' values of the Fourier trans

form of the time sampled signal. 

For evaluating Equation 11 when N = 2^, Cooley and Tukey 

developed the following recursive equations: 

^ p ' ^ m - p - i ( 1 2 )  

= I Ap-i(io'''',ip-2,km-p'''"'ko)M^^^"^ ^o) m-p 

^m-p 

where 

%(im-i'"'''io) = Am(io'''"'im-i) (13) 

B. Recursive Equations When N = r^rg'-'r^ 

In this section Equations 12 and 13 are extended to the 

more general case of N = r jr2 • • •rj^^. 

First j and k must be expressed in the following form. 

i = im-l'rirz-'-rm-l' + + il?. + ^0 

(14) 
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This allows Equation 11 to be written as 

k k "'I 
0 1 m-1 

jk 

(15) 

Note that 

w i k  =  [ ^ * - 1 ( ^ 2 ^ 3 ' ' + k o ]  (16) 

but 

W 

=  w  [im-i(rir2'''rm-i)+'''+io] tVi '^2^3* (17) 

When the product in the exponent is formed, the term may 

be expressed in the following form 

W ikm-1(^2^3 (18) 

= [w ( 1 r 2 • • • !"]%) [im-i ̂ ^2^3* * *^m-i ) + '''+ii] o^m-i (^2 * * 

Note that r^r2r3«'*rj^ = N and 

«" = (32.i/N)N , 1 (19) 
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therefore the bracketed term of Equation 18 taken to any power 

is still equal to 1 and we have 

W ( 2 0 )  

therefore 

JtV2(=^3---r„)+---+k„I 
(21) 

This allows Equation 15 to be written in the form 

M, 

^m-2 ^ •fl- 1 

( 2 2 )  

If the expression in brackets is written as 

''^m-2 ' * * •'^0^ ~ Ï 

^-1 

"ik (r •••r) 
A(km-i'''''ko)W 0 ^ m' 

(23) 
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Equation 22 may be expressed as 

Xtim-i'-'-'io) (24) 

= I I I Ai(ic'km-2'''''ko)w m-: " 
ko kl km-2 

By applying Equation 19 again we see that 

i^3km-2 * * *%^ = i^Tj+j 0 ) kji^-2 {^3^4 * '(25) 

This allows the innermost sum to be written as 

^2 (io'ii 'kin-3 ' * * • 

V2 

leaving Equation 24 in the form 

(27) 

= I  I  ' " I  A2(io'ii'km-3'''''ko)W 
^0^1 kj^-3 

Proceeding in similar fashion, a set of recursive equa

tions are obtained of the form 
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p 1 , 2 ,  •  •  •  , i n  

Note that the last array calculated gives the Fourier sums as 

Note the similarity of the form of these equations to the 

form of Equations 12 and 13. The fact that all of the varia

bles in Equations 12 and 13 take on only the values of 0 and 1, 

however, allows further simplification as will be shown in 

Chapter IV. 

If Equation 11 were evaluated as written for N values of 

j, it can be seen that a total of operations would be 

required where an operation is defined as a complex multi

plication followed by a complex addition. When Equation 11 is 

evaluated using the recursive Equations 28, only 

X(j 
m-i 

(29) 

C. Computational Savings 
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N (ri+r2 + * • •+riii) operations are required. Thus use of the 

Cooley-Tukey algorithm results in decreasing the number of 

operations by a multiplicative factor of at least (rir2••'r^)/ 

(ri+r2+- • •+rjji) . 

If a time series of 1024 values were to be analyzed, the 

direct evaluation of Equation 11 would require that = 

(1,024)2 = 1,048,576 operations be performed for each set of N 

spectral estimates. Using the Cooley-Tukey algorithm, this 

would be reduced by a factor of at least 51 resulting in 

20,480 operations (using N = 2^°). The actual saving, however, 

is even greater in this example because one-half of the 20,480 

operations involve a multiplier of ; therefore, the computa

tion consists of only 10,240 operations. 

Cooley and Tukey (5) showed that their algorithm has the 

greatest advantage over direct evaluation when ri = rz = ^3 = 

= r^ = 3. Little efficiency is lost, however, when the 

values are chosen to be either all twos or all fours. When 

the values of r are made considerably higher than four, the 

maximum efficiency afforded through the use of this algorithm 

is not attained, but the computational saving is still sub

stantial when compared with evaluating Equation 11 directly. 

As an example, consider the example of N = 2,500 

expressed as the product of 50 times 50. The reduction factor 

in this case is still 25. It should be noted, however, that 

if the values of r differ considerably, the efficiency of the 

algorithm drops accordingly. If N is expressed as the product 
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of 250 and 10, the reduction factor drops to 9.6. Thus, given 

a value of N, it is usually best to express N as the product 

of as many integers as possible while keeping their values 

near the same order of magnitude. 

In the following chapters, two special purpose digital 

machine organizations will be discussed which make use of both 

the computational savings and the parallel computation 

capabilities afforded by the Cooley-Tukey algorithm. In these 

machines, the choice of the values of r depends upon the pre

viously discussed considerations as well as the unique 

requirements of each analyzer. 
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IV. MACHINE ORGANIZATION WHERE N IS A POWER OF 2 

The large savings in computation and the possibilities of 

parallel computation afforded by the Cooley-Tukey algorithm 

suggest that spectral estimates of a sampled time function can 

be computed while the function is being sampled. If the 

spectral estimates, based on data from a record T seconds long, 

could be computed in T seconds, the operation could go on 

continuously, always giving spectral estimates from the last 

complete record input. This operation is rather loosely 

called real-time spectral analysis. 

In this chapter, a computer configuration is discussed 

which could be used to find the spectrum of a wide variety of 

signals in real-time. This machine, which is based on E being 

a power of 2, simultaneously inputs the time series from one 

record while outputting the spectral values from the previous 

record. 

A. Cooley-Tukey Equations for Binary Case 

When the recursive Equations 28 are specialized to the 

case of r^ = r^ = ••• = r^ = 2, they result in Equation 12. 

Since, however, kj^_p is allowed to take on only the values 0 

and 1, they may also be written in the form 
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(30) 

Ap-I ( j 0 ' * * * ' ip-2' ® '^-p- 1 ' * * * '^0 ̂ 

+  Ap_j (  j Q ,  '  • •, jp_2'I'^in-p-i '  

p = 1,2,...,m N = 2 ,ni 

Note that the N elements of the original time series are 

represented by the Ag terms with arguments which range from 0 

through N-1. From the list of Aq terms a list of A^ terms is 

generated as specified by Equation 30. Then the A2 terms are 

formed from the A^ terms, the A3 terms are formed from the A2 

terms and so on until the A^ terms are calculated. The A^ 

terms are actually the complex spectral estimates but they 

must be reordered as specified by Equations 31. Then the D.C. 

term will appear firsts the first harmonic second, the second 

harmonic third and so on. 

For the example of N = 8, Equations 30 and 31 can be 

written in the form: 

^ ( 3m-1 ' * * * ' 3 0 ) A-uj ( j 0 / * * • / jm-1 ) (31) 

Ai(jo,ki,ko) = AQ(0,kj,kQ) + A^(l,kj,kQ)W 
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A 2 ( i o , i l , k o )  =  A,(jo,0,ko) + Al(jo,l,ko)w'^l2+jo)2 (32) 

2 
Astiofii'iz) =  Aztio'ii'O) +  A2(]0fii,i)w(i22 +ii2+io) 

x(i2,ii,io) = Agtiofiifiz) (33) 

where 

j = + ji2 -t- jo jo = jl = 32 = OA 

k = k24 + k%2 + ko ko = kj = k2 = 0,1 

Figure 1 represents these operations diagramatically for 

the example of N = 8. Decimal representation of the numbers 

in the arguments has been used instead of the binary repre

sentation which appears in the formulas in the hope of demon

strating the operations more clearly. The lines and arrows 

identify the two terms from the previous set of values, 

which are combined to form a given Aj_^^ term. The right-most 

term of the two will be multiplied by W raised to the 

appropriate power and then added to the other term thereby 

satisfying Equations 32. The reordering of the A3 terms is 

also shown in accordance with Equations 33. 

In Figures 2 and 3, all of the equations of 32 and 33 are 

written out for N = 8. By viewing these equations in 
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Ao(5) A o  ( 6 )  Ao (7) Ao (1) 

A i  ( 6 )  Ai (7) Ai (4) A i  ( 0 )  

I 

A2(6) A2(7) A2(5) A2(3) A2(2) A2 (1) 

A3 (7) A3 (4) 

• ̂  

X (4) X (5) X (3) X (2) X (1) 

Figure 1. Equations 32 and 33 represented diagramatically 



www.manaraa.com

20 

conjunction with Figure 1, the requirements on a digital 

machine to implement this algorithm become more apparent. 

It should be noted that when the original time series is 

real valued, only the first N/2 values of the complex spectrum 

are independent and therefore need to be calculated. These 

N/2 values are the spectral estimates ranging between the D.C. 

term and one-half the sampling frequency. The last N/2 values 

of X represent the spectral estimates between minus one-half 

the sampling frequency and the D.C. term. In cases where both 

sides of the spectrum are desired, all N of the X terms, shown 

in Figure 3, should be computed. 

B. The N = 23 Binary Analyzer 

The two main problems associated with implementing the 

algorithm with a special purpose machine are concerned with 

the routing of the data and the generation of the W terms. 

Also, a configuration is desired which requires a minimal set 

of storage elements and a minimum number of stored W values. 

A configuration which satisfies both of these conditions 

quite well is shown schematically in Figure 4 for the example 

of N = 8. This value of N is too small to be practical but it 

is large enough to show the principles which carry over to 

larger analyzers, 

1. Routing the data 

The function of the first stage of the analyzer, shown in 
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Aj (0) = A(0) A(4)W0 

Ai (1) = A(l) + A(5)W0 

Ai (2) = A (2) + A(G)WO 

Ai (3) = A(3) r A(7) wO 

Ai (4) = A(0) f A(4)W4 

Ai (5) = A(l) + A(5)W4 

Ai (6) = A(2) + A(6)W4 

Ai (7) = A(3) + A(7)W4 

Ag (0) = Ai(0) + Ai (2)W° 

Agfl) = Ai (.1) + Ai (3)W0 

Az (2) = Ai(0) + Ai (2)W4 

Az (3) =  A i d )  Ai(3)W4 

Az (4) = Ai (4) + Ai (6)W2 

Az (5) = Ai + Ai {7)W2 

Az (6) = Ai(4) •f- Ai (6)W6 

As (7) = Ai(5) + Ai(7)WG 

Figure 2. Equations 32 written out with the arguments 
expressed in decimal form 
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Ag (0) = Ag (0) + Ag (l)wO 

A3 (1) = Ag (0) + Ag (DW^ 

A3(2) = Ag(2) + Ag(3)W2 

A3(3) = Ag(2) + Ag(3)W6 

A3(4) = Ag(4) + Ag(5)Wl 

A3 (5) = Ag (4) + Ag (5)W5 

A 3  ( 6 )  = Ag ( 6 )  + Ag (7)W3 

A3(7) = Ag(6) + Ag(7)W7 

X(0) = AgfO) 

X(l) = A3 (4) 

X(2) = A 3  (2) 

X(3) = A3 (6) 

X(4) = A3(1) 

X(5) = A3 (5) 

X(6) = A3 (3) 

X(7) = A3 (7) 

Figure 3. Equations 32 and 33 written out with the arguments 
expressed in decimal form 
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Figure 4. The N = 2% binary analyzer 
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Delay S % 

Reordering 
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Figure 5. The first stage of the N = 2^ binary analyzer 
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Figures 4 and 5, is to form the Aj terms from the Aq terms as 

specified by the equations in Figure 1. The second stage then 

forms the A2 terms and the third stage the A3 terms. Before 

entering the analyzer, the original time series is reordered, 

by the reordering network which makes the spectral values 

appear in the correct order at the output and results in a 

considerable simplification of the generation of the W values 

for each stage. 

The time series enters the reordering network in the 

order A(0) , A(l), A(2), A(3), A(4), A(5), A(6), A(7) as shown 

in Figure 5. After the reordering, the values enter the first 

stage in the order A(0), A(4), A(2) , A(6), A(l), A{5), A(3), 

A(7) . 

As a result of this reordering, the A(0) term is delayed 

by three sample periods before it enters the first stage of 

the analyzer. This delay is necessary so that the A(4) term, 

which was the fifth term of the original series, can be made 

the second term of the reordered series. Two possible methods 

of performing this reordering are discussed in Section IV.B.3. 

Note that each A value is required in the evaluation of 

two different summations. This suggests that it must be used 

and then stored for later use. In the diagram of Figure 5, 

Switch Rj is assumed to be in the up position when A{0) 

appears at the input. Just before the end of this sample 

period, a command pulse is sent to the shift registers, caus

ing them to store the numbers appearing at their inputs. At 
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the end of this sample period, the value A(0) is therefore 

stored in the upper and lower shift registers. 

At the beginning of the next sample period, A(4) appears 

at the input of the first stage. Switch Sj is in the up posi

tion and Switch Rj is in the down position. If we tentatively 

assume that can also be made available to the arithmetic 

unit at this time, we see that the three quantities required 

to form the A^(0) term are available to be operated upon. 

(See the equations in Figure 2). Thus, A(4) is multiplied by 

and the resulting product is added to A(0), forming A^ (0) . 

At the end of this sample period, a command pulse is also sent 

which again stores A{0) in the top shift register but stores 

A(4) in the bottom shift register. 

At the beginning of the next sample period. Switch is 

returned to the up position and Sj to the down position. This 

means that A(0) and A(4) are again available to be used when 

W'* appears, to form the A^ (4) term. At the end of this sample 

period, the A(2) input is read into the top shift register, 

the switches are changed and A(6) appears at the input. 

If this procedure is carried on, it is apparent that the 

Ai values will be computed in the following order: A], (0) , 

Ai(4), Ai(2), Ai(6), Aid), Ai(5), Ai(3), Aj (7) . 

In the second stage, the A2 values are to be computed in 

the following order: AgfO), A2 (4) , A2 (2) , A2(6), A2(l), 

A2{5), A2(3), Agt?). As seen from the equations in Figure 2, 

this implies that first A^(0) and A^(2) must be presented to 
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the arithmetic unit, then (4) and Aj(6), and then Aj(0) and 

Ai(2) again and so on. 

In the binary analyzer shown in Figure 4 this data rout

ing function in the second stage is also accomplished through 

the use of two shift registers. First the Ai(0) term is 

stored in the upper register and then the Aj(4) term. When 

Ai(2) appears at the input, Switches Eg and S2 are placed in 

their vertical positions which simultaneously presents A^(0) 

and Aj(4) to the arithmetic unit. Assuming that the correct 

value of W is supplied, the A2(0) term can then be calculated. 

At the end of this sample period, the A^(0) term is again 

stored in the first position of the upper shift register, and 

the Ai(4) term is stored in the first position of the lower 

shift register. 

During the next sample period, both the A^(4) and the 

Ai(6) terms are available to the arithmetic unit and thus the 

A2(4) term can be calculated. If the shift registers again 

input and shift to the right, during the next sample period 

the Aj(0) and A^(2) terms appear at their outputs. As these 

are the next terms needed, the R2 and S, switches are placed 

in their horizontal positions and the A2(2) term is calculated. 

This sequence of events continues with the switches 

changing states only half as often as in the previous stage, 

and with the A2 values being generated in the desired order. 

The following stages operate in a similar manner, except 

that the terms involved in each sum are separated further in 
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the list of terms input. This means the shift registers in a 

given stage must delay the numbers twice as long as in the 

preceding stage. In the third stage the delay is four sample 

periods. The period of time which the R and S switches remain 

in a given state is equal to the length of the time a number 

is delayed in going through a shift register in that stage. 

If it is assumed that the multiplication and addition 

operations take a substantial part of the sample period, it 

is apparent that a buffer is required between stages which 

will mean that the (0) term appears at the input of stage 

two the sample period after it was calculated in stage one. 

This is shown schematically in Figure 4 by an additional shift 

register following each stage. 

In practice the multiplier and adder and perhaps the 

buffer functions would all be performed by the arithmetic unit 

of each stage, but they have been shown as separate entities 

in the diagrams for clarity. 

2. Computing the values of W 

The appropriate values of W for each stage are generated 

through the use of De Moivre's formula which states (9) 

(cos 6 + i sin 6)^ = cos ne + i sin ne (34) 

If one value of W is "wired into" each stage of the 

analyzer, all succeeding values required can be computed by 

performing one multiplication per value. 
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As an example, consider the W values required in comput

ing the A3 terms as shown in the equations of Figure 3. If 

the initially required value W° is multiplied by the stored 

value, will be formed in the W3 register of Figure 4. 

If this W3 register is again multiplied by will be 

formed and so on. Thus it is quite convenient to generate the 

sequence , W^, w'^, W^, , W', W°, , and so on 

(note that W° = W^). As shown by the equations in Figure 3, 

this is the order in which they are needed to form the A3 

terms in the order A3(0), A3(4), A3(2), A3(6), A3(1), A3(5), 

A3(3), A3(7). Note that this corresponds to outputting the X 

values in the order X(0), X(l) , X(2), X(3), X(4), X(5), X(6) , 

X(7) . 

To form the values of W required by the second stage, 

is wired in and the sequence M*", W^, W°, etc. can be 

conveniently generated. The sequence generated for stage one 

is wO, Wt, wO, wO, etc. 

In actual practice, the first two stages would not 

require the use of a conventional arithmetic unit as the 

multiplications by the V7°, , and W® terms correspond to 

multiplications by 1, +i, -1, and -i, respectively. 

3. The reordering network 

Two possible configurations for the initial reordering of 

the data are suggested in this section. The first configura

tion results in a shorter fixed delay between the time the 
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first sample goes in and the time the first sample comes out, 

but isn't as easy to generalize for different values of N. 

The first reordering network is shown in Figure 6. It 

can be thought of as a shift register which is loaded from a 

number of different input lines. Each of the A values is 

loaded into the shift register as soon as it becomes available 

but, for the example of N = 8, A(l) and A(3) are loaded into 

location 1, A(0), A(2), A(5) and A(7) are loaded into location 

4, and A(4) and A(6) are loaded into location 1. For larger 

values of N a considerable amount of control logic would be 

necessary to load each A into its correct location. The 

register is assumed to shift its contents to the right just 

before each new value is loaded into it. 

The chart of Figure 6 shows the contents of each location 

of the shift register as a function of time. The last value 

loaded is circled. 

The second reordering configuration is shown in Figure 7 

for the example of N = 8. It consists of a two dimensional 

array of shift registers which will shift data either serially 

or in parallel. It is required that the array shifts the data 

in the direction of the solid arrows for one T-second period 

and then in the direction of the dotted arrows for the next 

T-second period and so on. The reordering is accomplished by 

inputting the N samples of each T-second record while the 

array is shifting along one path, and outputting the N samples 

while it is shifting along the other path. 
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A(7) ,A(3) ,A(5) ,A(1) ,A(6) ,A(2) ,A(4) ,A(0) 

Input 

I .  /  

1 
A(0),A(2) 

A(l) ,A(3)^/^ 

Control and ̂  

A(5),A(7) 

,A(6) 

< Gating Logic 
A 

A(7) ,A(6) ,A(5) ,A(4) ,A(3) ,A(2) ,A(1) ,A(0) 

Output 

Time in 
AT units 7 6 5 4 3 2 1 

0 - - - - - -

1 © - - A(0) - -

2 A(l) - (A^ - A(0) -

3 (y - A(l) - A(2) - A(0) 

4 A(3) - A(l) - A(2) (A(43 

5 - - A{3) 
0 

AXl) - A(2) 

6 - - - A(3) A(5) A(l) (A(^ 

7 - - - © A (3) A(5) A(l) 

8 - - -

' 
A(7) A (3) A(5) 

9 - - - - - A(7) A{3) 

10 - - - - - - A(7) 

Figure 6. The shift register reordering network for N = 8 
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A(7) ,A(3) ,A(5) ,A(1) ,A(6) ,A(2) ,A(4) ,A(0) 

LO 
M 

A{7) ,A(6) ,A(5) ,A{4) ,A{3) ,A(2) ,A(1) ,A(0) 

Figure 7. The array reordering network for N = 8 
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When a record has been loaded in along the dotted lines 

shown in Figure 7, the A values will appear as shown in Part 

(a) of Figure 8 just before the shifting path is changed. 

Note that if these values are now output along the solid line 

path, the reordering will have been accomplished. 

When a record has been loaded in along the solid lines, 

the A values will appear as shown in Part (b) of Figure 8 just 

before the shifting path is changed. Note that if these 

values are now output along the dotted line path, the reorder

ing will also have been accomplished. 

The advantage of being able to perform the reordering by 

either method is that the array can be outputting one set of 

data while inputting the next set. 

For other values of N = 2^, the reordering is still per

formed by an N element array. When m is an even number, the 

array will be square and when m is odd (as in the example of 

N = 2^) the array will be rectangular. 

In each case the first value will be output from the 

array T seconds after the first value is put in. For the 

N = 8 analyzer this means that the first spectral estimate 

from a given record would not be output until llAT seconds 

after the record was initially put into the reordering net

work. This could be reduced considerably, however, by 

performing the analysis and taking the values out of the 

reordering network at a rate faster than the original sampling 

rate. 
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A(6) 

A(7) 

A(0) 

A(l) 

A(2) 

A(3) 

A(5) 

A(3) 

A(4) 

A(l) A(0) 

A(7) 

A(2) 

A(6) 

(b) 

Figure 8. Arrangement of the input series in the array 
reordering network (a) when input along the dotted 
arrows and (b) when input along the solid arrows 
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4. The squaring smoothing networks 

The network which forms the |X(j)|^ terms from the com

plex valued spectral estimates, could be composed of another 

arithmetic unit or, if the spectrum is to be displayed in 

analog form, the network could consist of analog squaring 

circuits and an analog adder. 

Data smoothing, using the "Manning" spectral window (see 

Equations 10), can be done quite conveniently using the con

figuration of three registers shown in Figure 9. The 

unsmoothed spectral estimates are stored in Register A as they 

are computed, while at the same time the values previously in 

Registers A and B are moved to Registers B and C respectively. 

The weighting by i/4, 1/2 and 1/4 is accomplished by having 

the decimal point in Registers A and C occur two places to the 

left of the initial position. In Register B the decimal point 

is one place to the left of the initial position. Each 

smoothed spectral estimate is obtained by adding the contents 

of Registers A, B and C. 

Convolution with a spectral window not using the 1/4, 

1/2, 1/4 weights, requires a more involved arithmetic unit. 

C. The N = 2^, m Stage Binary Analyzer 

The machine organization shown for the N = 2^ analyzer is 

easily extended to the case of N = 2^. The general configura

tion is shown in Figure 10 and consists of adding more stages 

to the three original ones until the required value of N 
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Figure 9. Data smoothing network 
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Figure 10. The N = 2^ binary analyzer 
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is attained. 

This add-on feature suggests that once a basic unit is 

built, extra modules could be added on or taken off to change 

the value of N. It should be noted that each module contains 

twice as many bits of storage as the one preceding it, 

therefore the last module is the most expensive. Thus if the 

complexity of the last module can be reduced, a considerable 

saving can be achieved in the cost of the analyzer. 

In a specific design where a definite maximum value of N 

is known, it turns out that the lower shift register can be 

eliminated in the last stage. This is possible when only N/2 

spectral estimates are required and results from the fact that 

in this case the values being input are only used one 

time. No stages can be added on after a module built in this 

way, however, so this module places an upper limit on the 

number of modules which can be used in a given analyzer. 

The only part of the analyzer which must be seriously 

altered, when the value of N is changed, is the reordering 

network. A different reordering network has to be available 

for each value of N. 

The comments previously made about the squaring and 

smoothing networks are valid for any value of N. 

D. Components Required 

An idea of the cost involved in building a modular 

analyzer can be obtained by estimating the number of 
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components required as a function of N. These estimates are 

tabulated in Part (a) of Figure 11 for an analyzer using the 

array reordering network. 
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Figure lia. Components in binary analyzer assuming 10 bit 
numbers 

Figure lib. Components in r^r? analyzer assuming 10 bit 
numbers 
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N m 

reordering network 

Logic gates 
Flip-flops & inverters 

Analyzer 

Arithmetic 
Bits delay units 

B 3 80 320 240 1 

16 4 160 640 460 2 

32 5 320 1,280 950 3 

64 6 640 2,560 1,920 4 

128 7 1,280 5,120 3,920 5 

256 8 2,560 10,240 7,780 6 

512 9 5,120 20,480 15,480 7 

1,024 10 10,240 40,960 30,860 8 

2,048 11 20,480 81,920 61,600 9 

(a) 

N ri rz Flip-flops 
Logic gates 
& inverters 

Arithmetic 
units 

8 4 2 160 640 1 

25 5 5 500 2,000 1 

50 10 5 1,000 4,000 1 

64 8 8 1,280 5,120 1 

100 10 10 2,000 8,000 1 

225 15 15 4,500 18,000 1 

400 20 20 8,000 32,000 1 

625 25 25 12,500 50,000 1 

900 30 30 18,000 72,000 1 

1,600 40 40 52,000 128,000 1 

2,500 50 50 50,000 200,000 1 

(b) 
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V. MACHINE ORGANIZATION WHERE N IS A PRODUCT OF TWO INTEGERS 

The machine discussed in this chapter is applicable to 

the case where N may be expressed as the product of two 

integers. It is best suited for analyzing pulses or echo 

returns as it will not accept data from the next record while 

it is outputting the spectrum of the last record. That is, 

there must be a "dead time" between input, records. This 

problem can be minimized or eliminated, however, as will be 

discussed in Section V.B.4. 

A. The Cooley-Tukey Equations for N = rirg 

When Equations 28 and 29 are specialized to the case of 

m = 2, they can be written in the form 

Ai(io,ko) = % A(ki,ko)wio^i^2 

ki 
(35) 

^2 (jor jl) I Ai(io,ko) w ( i i r i + i o ) k o  
ko 

= Azfio'ii) (36) 

where 

j = ji^i+jo jo = 0,l,.'.,ri-l i1 = 0,1 

k = kirg+ko kg = 0,1,••«,r2-l k 0,1,•••,ri-l 
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If ri is chosen to be 4 and r2 to be 2, we can again 

consider the example of N = 8. For this example, ws write 

Equations 35 and 36 as 

Ai(jo.ko) = I A(ki,ko)wiokl2 
ki=0 

(37) 

AzCjorji) = I 
k o = 0  

X(il,jo) = A2(jofjl) (38) 

where 

j = il4 + jo jo = 0,1,2,3 ji = 0,1 

k — kj2 + ko k 0 — 0,1 k % = 0,1,2,3 

Note that j and k are no longer represented in terms of a 

number system with a constant radix. 

Conversions from the A(ki,ko) representation to the A(k) 

decimal representation and from the X(ji,jo) representation to 

the X(j) representation are given in the table in Figure 12. 

All of the terms of Equations 37 and 38 are given with decimal 

arguments in Figure 13. 
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(ki,ko) (k) (ki,ko) (k) (klfko) (k) (ki,ko) (k) 

0 0 0 1 0 2 2 0 4 3 0 6 

0 1 1 1 1 3 2 1 5 3 1 7 

(a) 

(jl'jo) (j) (ji'jo) (j) 

0 0 0 1 0 4 

0 1 1 1 1 5 

0 2 2 1 2 6 

0 3 3 1 3 7 

(b) 

Figura 12. Conversion from the (a) A(ki,ko) representation 
to the A(k) representation and from the 
(b) X(ji,jo) representation to the X(j) repre
sentation wnere 

j = iiri + jo = ji4 + jo 

k  =  k i r 2 + k o  =  k i 2 + k o  
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Ai(0) = A(0)W° ¥ A(2)W0 + A(4)W0 + A(6)W0 

A,(l) : = A(1)W0 + A(3)W0 + A(5) wO + A(7)W0 

Al(2) : = A(0)W° + A(2)W2 + A(4)W'» + A(6)W6 

Ai(3) = A(1)W° + A(3)W2 + A(5)W4 + A(7)WS 

Al(4) : = A(0)WO + A(2)W4 + A(4)W° + A(6)W4 

Al(5) : = A(1)W° + A(3)W4 + A(5)W0 + A(7)W4 

Ai(6) : = A{0)W0 + A(2)WS + A(4)W'* + A(6) W2 

Al(7) : = A(1)W0 + A(3)WG + A(5)W4 + A(7)W2 

A2(0) = Ai(0)wO + A (1)W° = = X(0) 

Azd) = A,(0)W0 + A (1)W4 = = X(4) 

A2(2) = Ai(2)wO + A (3)Wl = = X(1) 

A2(3) = Ai(2)W° + A (3)W5 : = x(5) 

A2(4) = Ai{4)W° + A (5)W2 = = X(2) 

AztS) = Ai(4)wO + A (5)W6 = = X(6) 

A2(6) = Ai(6)wO + A (7)W3 = = X(3) 

CM <
 = Ai(6)wO + A (7)W7 = = X(7) 

Figure 13. Equations 37 and 38 written out with the arguments 
expressed in decimal form 
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B. The N = rir2 Analyzer for N = 8 

As before, the primary considerations in specifying a 

machine organization are the routing of the data and the 

generation of the values of W. A configuration which does 

quite well in both respects is shown in Figure 14 for the 

example of N = 8. 

1. Routing the data 

In this machine the initial time series enters the 

arithmetic unit in the order, A(0), A{1) , A(2) , A(3), A(4) , 

A(5), A(6), A(7). During the first sample period; i.e. 

while A(0) is the most recently obtained sample, the follow

ing sequence of events takes place. 

1) A(0) is multiplied by W° and placed in the 
number 7 position of the shift register. 

2) The contents of the shift register are shifted 
one position in the direction of the solid 
arrows. 

3) A(0) is multiplied by and stored in 7. 

4) The contents are shifted again. 

5) A(0) is multiplied by W° again and stored in 7. 

6) The contents are shifted again. 

7) A(0) is multiplied by W° again and stored in 7. 

Note that at this point we have evaluated the first term 

in the summations for A^(0), A^(2), Aj(4) and Aj(6) and have 

stored these partial sums in the shift register. Since A(0) 

appears in the equations only these four times, it does not 

have to be saved. 
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INPUT OUTPUT 

ARITHMETIC UNIT 

W GENERATOR 

SMOOTHING 

A(7) ,A(6) ,A(5) ,A(4) ,A(3) ,A {2) ,A(1) ,A(0) X (7) ,X (6) ,X (5) ,X (4) ,X (3) ,X (2) ,X (i) ,X (0) 

Figure 14. The N = 4-2, rir2 analyzer 
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During the second sample period, the A(l) term will be 

multiplied by W° four times and the results will be stored as 

the first terms of the summations which will form A^d), 

Aj(3) , Aj (5), and A%(7). The contents of each location in the 

analyzer at this point are shown in Part (a) of Figure 15. 

During the third sample period, A(2) appears at the input 

and is also multiplied by W°. This product is added to the 

A(0)W° term which appears at the output of the array. Then 

the contents of the array are shifted one position and the sum 

is stored in location 7 of the array. Next the A(2) term is 

multiplied by and added to the next A(0)W° term output from 

the array. The array is again shifted and this new sum is 

stored in location 7. This sequence is repeated two more 

times while A(2) is present at the input and four more times 

when A(3) appears at the input. 

The contents of each location in the array at this time 

are shown in Part (b) of Figure 15- Note that now the first 

two terms of each of the summations required to find the Aj 

values have been evaluated and saved. 

If the same pattern of shifts, multiplications and stores 

is continued until the A(7) term has been used, the A^(0) 

summation will end up in location 0, the Ai(l) summation will 

end up in location 1, and so on as shown in Part (c) of 

Figure 15. Thus the A^ values have been found by simply 

multiplying the generated values of W by the input value, 

adding the result to the output of the array, and storing the 
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I 

(a) 

(b) 

r- 1 

Ai (4) 

fc) 

Figure 15, Contents of the rirg analyzer while operating 
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results back in the input of the array. 

From the equations shown in Figure 13, we see that the 

first A2 term required is the A^fO) terra (which corresponds to 

X(0)). To form this term, the stored values are shifted 

along the dotted arrows instead of the solid arrows. This way 

the Ai(0) term can be shifted into the arithmetic unit and 

multiplied by W°, forming the first term of the AzfO) summa

tion. Then Aj(1) can also be shifted in and multiplied by W° 

and added into the A2(0) partial sum. In this example, this 

completes the AgfO) summation and AgfO) can be output. As 

both the Ai(0) and Ai(1) terms may be needed later, they are 

stored back into the input of the shift register. 

The A2(2) term is computed next as it corresponds to the 

X(l) spectral value. As the shifting is now being done along 

the dotted lines, the Aj(2) and A^(3) terms required to com

pute this A2(2) term are ready to be output from location 0 of 

the shift register in the correct order. Assuming that the W 

values are again supplied as required, the X(l) summation can 

be performed and the value output. As the Aj(2) and Aj(3) 

terms are required again, they are stored back into the shift 

register. 

This same sequence of operations can be continued until 

all 8 of the X terms have been found, or can be stopped after 

the first N/2 = 4 terms have been found. 
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2. Computing the values of W 

The appropriate values of W are still generated through 

use of De Moivre's formula (Equation 34), but more control 

logic is required. 

Note that in forming the values, the values of W are 

required in the following order. 

First, terms of sums W° W° W° W° W"^ W® 

Second terms of A^ sums w'' 

Third terms of Ai sums W° W** W° W'^ W° W** W® 

Fourth terms of Aj sums W° W® W'* W° W® W'* W? 

This sequence is obtained by recalling the order in which the 

terms in the equations of Figure 13 are computed. 

In forming the A2 values, the values of W are required in 

a different order. 

First A2 sum w" w° 

Second A2 sum wo wl 

Third A2 sum wo W2 

Fourth A2 sum wc W3 

Fifth A2 sum WO W't 

Sixth A2 sum WO W5 

Seventh A2 sum wo W6 

Eighth A2 sum WO 

A configuration which will generate values of W in this 

order with a moderate amount of computation is shown in 
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Figure 16. While the Aj values are being computed, the 

following algorithm is carried out using this configuration. 

1) Reset Q to 

2) Reset P to W° 

3) Multiply Q by 

4) Use the W in P 

5) Multiply P by Q and store the result in P 

6) Go back to 4) 7 times, then on to 7) 

7) Go back to 2) 3 times, then on to 8) 

While the A2 values are being computed, the algorithm 

given below is followed. 

8) Reset Q to W^ 

9) Reset P to W'^ 

10) Multiply Q by W^ 

11) Use the W in P 

12) Multiply P by Q, store the result in P 

13) Go back to 11) once, then on to 14) 

14) Go back to 9) 7 times, then back to 1) 

The configuration in Figure 16 shows the P and Q 

registers as indicated and also indicates how the W^ and W^ 

constants are wired into the arithmetic unit. Note that a 

maximum of two multiplications is performed in finding a 

single value of W. 
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IRED IN CONSTANT REPRESENTING THE 
MULTIPLIER FOR THE Ai SUMMATIONS 

:vIRED IN CONSTANT REPRESENTING THE 
MULTIPLIER FOR THE A, SUMMATIONS 

REGISTER Q, CONTAINS FIRST NON
ZERO M OF EACH SERIES 

REGISTER P, CONTAINS W TO BE USED 

ARITHMETIC 

CONTROL 

AND 

UNIT 

Figure 1 6 c  Configuration used in computing values of W  for 
the rirz analyzer 
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3. The smoothing network 

The requirements on the smoothing network for this 

analyzer are exactly the same as discussed in Section IV.B.4 

for the binary analyzer as both analyzers evaluate essentially 

the same equation (i.e. Equation 11). 

4. Characteristics of the N = 4*2 analyzer 

This machine is somewhat more flexible than the binary 

analyzer because N is not required to be a power of 2. The 

price paid for this characteristic is that more multiplica

tions are required during each sample period. For the example 

of N = 8, the binary analyzer required that each arithmetic 

unit perform one multiplication to find a value of W and one 

to form the next value of A during each sample period. The 

N = rirz analyzer requires a maximum of 2 multiplications to 

form each W and 4 multiplications to form 4 terms of the 

summations during each sample period. In addition to the 

computation performed during the T second interval, more 

multiplications are also required upon outputting each spec

tral value. If we assume a multiplier which is just "keeping 

up", this would mean that after the 8AT interval, more multi

plications would have to be performed taking approximately 2AT 

seconds. Thus there would be a 2AT second time interval 

following each BAT second record during which the next record 

could not be read in. 

If r^ had been 2 and r2 had been 4, the required 
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multiplication speed would be less but the "dead time" between 

records would be greater. Of course, if a time compression 

unit is used with a faster multiplier, the dead time would not 

have to be seen by the input signal. 

C. The N = r^rg Analyzer in General 

The data routing configuration required for any value of 

rj and r2 is shown schematically in Figure 17. The operation 

is directly analogous to that of the N = 4*2 analyzer. 

The W generation algorithm is written for the general 

case as follows: 

Reset Q to 

Reset P to W® 

Multiply Q by 

Use the W in P 

Multiply P by Q and store the result in P 

Go back to 4), N-1 times then on to 7) 

Go back to 2), rj-l times, then on to 8) 

N-1 Reset Q to W 

Reset P to 

Multiply Q by 

Use the W in P 

Multiply P by Q and store the result in P 

Go back to 11), rg-l times, then on to 14) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
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A(N-l) ,. ,A(2) ,A(1) ,A(0) 
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1 
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1 

1 
1 

li 
1 

4 
1 

1 
1 

1 
1 

1 
1 

1 
1 1 1 

1 

1 1 
1 

- — 

A 1 
1 

A 

-

A 
} 

- -

U 

OUTPUT 

rj columns 

r2 rows 

(ji 
cn 

X(N-l) , • • • ,X(2) ,X(1) ,X(0) 

Figure 17. The rir2 analyzer composed of rj columns and r2 rows 
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14) Go back to 9), N-1 times, then back to 1) 

(NOTE: If only N/2 values of X are being 
computed, the transfer from 14) to 9) 
will only have to be made N/2-1 times for 
each record.) 

During one sample period the arithmetic unit must be 

capable of performing a maximum of (2ri + i) complex multi

plications . For each spectral component computed during the 

"dead time", (2r2 + 1) complex multiplications must be per

formed. A tradeoff generally occurs in the choice of the 

and r2 values since rj determines the highest allowable 

sampling rate for a given arithmetic unit, and determines 

the length of the "dead time". 

D. Components Required 

An idea of the cost involved in building the rir? 

analyzer can be obtained by estimating the number of compon

ents required as a function of N. These estimates are 

tabulated in Part (b) of Figure 11 on page 41. 
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VI. DISCUSSION OF RESULTS 

A. Application of the Analyzers 

When determining which of the analyzers can be applied to 

a particular problem, the following points must be considered: 

1) The highest required sampling rate. 

2) Whether N can be made a power of 2. 

3) The amount of allowable dead space 
between records, 

4) The required multiplication speed of 
the arithmetic units. 

5) Cost comparisons for different choices 
of ri and rg. 

If a sampling rate of 5 00,000 samples per second is 

specified, it is quite clear that the binary analyzer would be 

easier to implement than the rir2 analyzer unless r% could be 

made 2 or 3. In the rir2 analyzer this would imply a very 

long "dead time" between records to complete the computations. 

If this "dead time" is not allowable, the problem dictates the 

binary analyzer. At this sampling rate even the binary 

analyzer may need to be modified, depending on the multiplica

tion speed of the available arithmetic units. Inputting 

500,000 samples per second implies that the complex products 

for finding the W and A terms must be formed during every 2 

microsecond sample period. 

At lower sampling rates, and with a "dead time" allowed, 

the rir2 analyzer would generally be preferred. The 
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constraints that (2ri + 1) complex multiplications must be 

performed during each sample period, and that (2r2 + 1) 

complex multiplications per spectral component must be per

formed during the "dead time", usually lead to the desired 

values of r^ and and fix a maximum allowable multiplication 

time. 

The choice of one analyzer over the other may change 

considerably, however, as new devices are marketed. If the 

thin-film shift registers designed by Spain, Jauvtis and 

Fuller (12) can be sold for 10 cents per bit or less, this 

would mean that the modular analyzer would suddenly be rela

tively inexpensive. Of course, the 10 cent per bit figure may 

also be approached in the future for an integrated circuit 

version of the rir2 analyzer. 

In any case, even though the analyzers have been dis

cussed in one particular implementation, advances ir 

technology, and the availability of different types of 

components might mean that a different implementation could 

be considered while keeping the basic organization of the 

analyzer the same. 
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VII. AREAS FOR FURTHER STUDY 

One area which could be expanded upon is using the 

Cooley-Tukey algorithm to find both the Fourier transform and 

inverse transform, thereby allowing rather arbitrary digital 

filtering to be performed in real-time. 

In this thesis, it has been assumed that the function 

being sampled is real valued (as opposed to complex valued). 

The implications of complex sampling and analysis is another 

area which could be studied considerably. 

As cross correlation functions and autocorrelation func

tions can also be estimated from complex spectral estimates, 

a digital real-time cross correlator could be considered. 
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VIII. CONCLUSIONS 

Two basic digital machine organizations have been pre

sented which can in most cases find spectral estimates of a 

time function in real-time. The basic operation of the 

machines draws heavily upon the algorithm for the machine 

calculation of complex Fourier series presented by Cooley and 

Tukey in the April 19 65 issue of Mathematics of Computation 

(5) . 

The binary analyzer is restricted to cases where W may 

be chosen to be a power of 2, but is very versatile in terms 

of allowable sampling rates. A sampling rate in excess of 

500,00 0 samples per second is not unreasonable while the same 

machine could also be used with a sampling rate of less than 

one sample per hour. The fact that each section of the 

analyzer works somewhat independently of the others indicates 

that the possibility of changing the value of N, as well as 

the sampling rate, is feasible. The cost of the analyzer can 

be broken down into three basic sections: the cost of the 

arithmetic units, the cost of the shift registers, and the 

cost of the reordering networks. 

The r^rg analyzer is restricted to the case where N may 

be chosen to be the product of two integers and where a "dead 

time" is permitted between records. It is therefore well 

suited for analysis of echo returns and siesmic returns or any 

phenomena involving finite length records with a "dead time" 
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between records. 

The rirg analyzer must perform a substantial number of 

calculations during one sample period so it will not generally 

operate at as high sampling rates as the binary analyzer, but 

it requires fewer components so it would probably be less 

expensive. When no "dead time" is allowable, the rirz 

analyzer could be used in conjunction with a time compressor 

whereby the data would be read and stored during the "dead 

time" and then put into the analyzer at a rate faster than it 

was originally sarapled. This would be quite convenient when 

one analyzer is to be time shared by several different 

signals as in this case the extra data storage is needed 

anyway. The cost of the rirg analyzer lies mainly in the 

array of shift registers, which must hold N complex numbers, 

and in the price of the one arithmetic unit. 



www.manaraa.com

63 

IX. LITERATURE CITED 

1. Anstey, N. A. Correlation techniques: a review. Tulsa, 
Oklahoma, Seismograph Service Corporation. 1964. 

2. Blackman, R. B. and Tukey, J. W. The measurement of 
power spectra. New York, Dover Publications, Inc. 
1958. 

3. Brown,- G. B. and Nilsson, J. W. Introduction to linear 
systems analysis. New York, John Wilev and Sons, 
Inc. 1962. 

4. Chu, Y. Digital computer design fundamentals. New York, 
McGraw-Hill Book Company, Inc. 327-328. 1962. 

5. Cooley, J. W. and Tukey, J. W. An algorithm for the 
machine calculation of complex fourier series. 
Mathematics of Computation 19: 297-301. 1965. 

6. Davenport, W. B., Jr. and Root, W. L. Random signals and 
noise. New York, McGraw-Hill Book Company, Inc. 
1958. 

7. Lee, Y. W. Statistical theory of communication. New 
York, John Wiley and Sons, Inc. 1960. 

8. Marks, W. and Pierson, W. J. The power spectrum analysis 
of ocean-wave records. American Geophysical Union 
Transactions 33: 834-844. 1952. 

9. Nehari, Z. Introduction to complex analysis. Boston, 
Allyn and Bacon, Inc. 1961. 

10. Papoulis, A. The fourier integral and its applications. 
New York, McGraw-Hill Book Company, Inc. 19 52. 

11. Potter, R. K. Introduction to technical discussions of 
sound portrayal. Acoustical Society of America 
Journal 18: 1-3. 1946. 

12. Spain, R. J., Jauvtis, H. I. and Fuller, H. W. Some new 
thin-film shift register designs. Journal of 
Applied Physics 36: 1103-1104, 1965. 



www.manaraa.com

64 

X. ACKNOWLEDGMENTS 

The author wishes to thank Dr. H. W. Hale for his 

encouragement and his many helpful suggestions during the 

preparation of this manuscript. 

This work was done under the support of a National 

Science Foundation Traineeship. 


	1966
	Digital real-time spectral analysis
	Glenn David Bergland
	Recommended Citation


	tmp.1411601292.pdf.bIH34

